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INTRODUCTION 

NATURAL convection in a side wall-heated enclosure, as 
shown schematically in Fig. 1, serves as a model for diverse 
types of thermal engineering systems. A large number of 
past investigations have dealt with this class of convective 
phenomena at high Rayleigh numbers by using a variety of 
theoretical, numerical and experimental techniques (see the 
reviews by, e.g. Ostrach [l]). For the basic laminar two- 
dimensional flows in an air-filled square cavity, benchmark 
numerical solutions are available for Rayleigh numbers up 
to Ro = 10’ [24]. It is important to note the significance of 
the thermal boundary conditions at the bounding surface 
walls of the container. In the majority of prior studies, it has 
been customary to specify the completely insulated condition 
at the walls other than the isothermal vertical side walls. On 
the other hand, several two-dimensional numerical analyses 
[5-71 delineated the changes in the Row properties when the 
horizontal walls were perfect conductors. In essence, the 
adoption of a perfect conductor implies that the temperature 
itself, rather than the temperature gradient, is prescribed on 
the boundary wall of interest. As examples, the cases of 
a constant-temperature or a linearly varying temperature 
protile on the horizontal surfaces were examined in detail [5- 
7]. The results of these studies clearly identified that the 
gross flow and heat transfer characteristics were substantially 
affected by the precise forms of thermal conditions at the 
boundary walls. 

For actual thermal systems, both the completely insulating 
condition and the perfect conducting condition represent 
highly idealized extreme situations. The realistic conditions 
at the solid boundary walls of a container may be better 
characterized as partially conducting; the solid walls are 
materials of finite thermal conductance. The temperature 
distribution at the solid walls is, therefore, not known u 
priori. An accurate determination of the thermal behavior at 
the walls constitutes a crucial part of the solution process of 
the problem. 

It follows that an in-depth understanding of the convective 
heat transfer properties, with the introduction of more 
realistic thermal boundary conditions, is warranted. The pre- 

t To whom all correspondence should be addressed. 
Presently, Energy Technology Research Institute, Tokyo 
Gas Co, Ltd, 1-16-25 Shibaura, Minato, Tokyo 105, Japan. 

sent work addresses this aspect. The purpose of the present 
note is to illustrate the flow and thermal fields inside the 
container by using a physical model which incorporates 
the finiteness of thermal conductivity of the boundary solid 
walls. 

One plausible approach would be to formulate a conjugate 
heat transfer problem. This involves a simultaneous treat- 
ment of conduction in the solid walls as well as convection 
in the fluid inside the container. Kim and Viskanta [8] 
successfully applied this methodology to two-dimensional 
rectangular enclosures. An air-filled cavity was fitted inside 
a square solid block, the external surfaces of which were 
heated differentially in either the vertical or horizontal direc- 
tion. The conjugate heat transfer approach is straightforward 
since not much modification is required to the existing solu- 
tion schemes designed for conventional convective fluid 
flows. However, due to the enlarged computational domain 
which now includes the solid walls, an appreciable increase 
of computational effort is unavoidable. This undercuts the 
attractiveness of the method, and the difficulties compound, 
especially when fully three-dimensional situations are under 
consideration. 

A preferred alternative is to devise a model which would 
incorporate the effects of solid wall conductance to the 
boundary condition at the solid surfaces. This can be 
accomplished by introducing the concept of thermal con- 
ductance S, which is defined as 

where k, and k,, stand for the thermal conductivity of the 
solid wall and of fluid, respectively, and L, refers to the 
thickness of the wall [9, lo]. Relying on this concept [9], the 
thermal boundary condition at e.g. y* = 0, can be expressed 
as 

5 = qp- T*) (2) 

where the subscript y  is affixed to S* in order to denote the 
conductance of the horizontal wall. Similar expressions can 
be obtained for the other walls of the cavity. It is obvious 
that, by setting S$ equal to zero, the completely insulated 
condition is recovered. Note that the above formulation 
involves the temperature of the environment, T*, to which 
the external surfaces of the container walls are exposed. 
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NOMENCLATURE 

5 specific heat at constant pressure T, non-dimensional environmental 
[J kg- ’ K- ‘1 temperature, (T: - T,)/(T,, - T,) 

9 gravitational acceleration [m s-r] uo 
ko>k thermal conductivities of fluid and of wall, 

re$r~~ velocity, [g/l&( T,, - T,-)] ‘I2 

respectively [w K- ’ m- ‘1 u non-dimensional velocity component in the 
LO reference length (enclosure width) [m] x-direction, u*/u,, 
L - thickness of wall [m] .v, .v. z non-dimensional Cartesian coordinates, 
Nu, Nu the local and average Nusselt numbers (x8. y*, 2*)/L,. 
Pr Prandtl number, c&k, 
Ra Rayleigh number, g&,p’L~(T,,- T,-)/pk, Greek symbols 
s?., s: non-dimensional thermal conductance in the s thermal expansion coefficient [K- ‘1 

y- and z-directions, (S-F, .V)L, P viscosity [kg m- ’ s- ‘1 
T non-dimensional temperature, P density [kg me3]. 

(T*-TcMTH--cl 
Tc. T,, temperatures of the cooled and the heated Superscript 

side walls, respectively [K] * dimensional quantities. 

In the present paper, the effects of finite conductance at 
the bounding walls of a cubical enclosure (sketched in Fig. 
1) are delineated by numerically solving the governing equa- 
tions. An air-filled cavity (Pr = 0.71) is considered. The side 
walls at x* = 0 and Lo are differentially heated at TH and T, 
(TH > T,-), respectively. Results are acquired for Ra = 106. 
The field patterns at this Rayleigh number are representative 
of those observed for relatively high values of Ra; the bound- 
ary layers form near the isothermal side walls (x* = 0 and 
Lo), and a near-stagnant core exists in the interior. 

The present formulation, shown in (I) and (2), was con- 
ceived and effectively utilized in ref. [9] for various two- 
dimensional convective processes. The strength of this 
approach lies in its simplicity; yet, much of the relevant 
physics is represented in this model. As stated earlier, this 
model can, with virtually no extra cost for computations, 
simulate the conditions of the solid as well as the external 
environment. The thermal conductance is not necessarily a 
constant; it may vary in space as well as in time, which can 
accommodate the non-uniformity of the wall conditions. 
When specifying large SF to simulate a situation with a 
highly conducting solid wall, the value of S.Fmay be adjusted 
properly near y* = 0 and Lo so that the present formulation 
could accurately handle the comer effects. However, in the 
present study, the thermal conductance is assumed to be 
constant and the range of S,*and Szdoes not exceed 10.0. 

A similar numerical investigation was documented 
recently by Le Pentrec and Lauriat [I I]. Their work was 
focused to the effects of fmite thermal conductance of the end 
walls (z* = 0 and L,) only. Two cases of the environmental 
temperature, namely T: = To or T,-, were examined for both 
air- and water-filled cavities in the range of IO’ < Ra d IO’. 
For the case of air as the medium, notable three-dimensional 

g=*s,y- T ) -It x*=L, 

FIG. I. The geometry and the boundary conditions of the 
problem. 

variations appeared in the field near the end walls (z* = 0 
and L,) when a relatively large conductance (S.F> 10.0) was 
assigned, together with the condition that T: = Tc. 

The main emphasis of the present study is placed on scru- 
tinizing detailed local physical properties of the flow and 
temperature fields under the presence of partially conducting 
horizontal and end walls. Three-dimensional features of flow 
and heat transfer inside the cavity are illustrated by sys- 
tematically altering the thermal conductance of the hori- 
zontal walls ( y* = 0 and L,) and that of the end walls (z* = 0 
and L,). Impacts of the environmental temperature on field 
patterns are also considered. 

The present numerical work employs a large number of 
grid points, i.e. 623. In the case of perfectly insulated wall 
conditions (Sf = 5’: = 0.0). the accuracy of the present three- 
dimensional results was proven to be comparable to that 
achieved by the most elaborate two-dimensional benchmark 
solutions documented in the literature [12]. 

The flow is governed by the three-dimensional, time- 
dependent, incompressible Navier-Stokes and energy equa- 
tions. The Boussinesq approximation is invoked for the 
physical properties of fluid. These equations are solved by a 
control volume based finite difference procedure. The math- 
ematical formulation and the numerical methodology are 
available elsewhere [l2], and they are not repeated here. It 
suffices to mention that the convective terms are discretized 
by the QUICK scheme modified for non-uniform grids [I31 
and that the iterative solution algorithm is based on the 
well-known SIMPLE type [I41 and the Strongly Implicit 
Procedure [ 151. 

RESULTS AND DISCUSSION 

The three-dimensional variations of field patterns are 
assessed by examining the distribution of the Nusselt number 
at the isothermal vertical side walls (x = 0 and I). For this 
purpose, the local and average Nusselt numbers are defined, 
respectively, as 

the local Nusselt number : Nu( y, z) = - g 
r-oorl 

the average Nusselt number : 

Figures 2 and 3 display the distribution of the local Nusselt 
number at x = 0 for different values of S,, S, and T.. In the 
results presented in Fig. 2, the environmental temperature 
T. is equal to 0.5 ; consequently, the local Nusselt number 
distribution at the cooled wall (at x = I) is anti-symmetric 
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FIG. 2. The distribution of the local Nusselt number, Nu, at the heated wall (x = 0) for Ra = lo6 and 
T’=0.5.(a)Sy=Sz=0.0.(b)S,= 10.OandS~=O.O.(c)Sy= 10.0andS,=5.0.(d)S,-r~andS,=O.O. 
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FIG. 3. The distribution of the local Nusselt number, Nu, at the heated wall (x = 0) (left) and at the cooled 
wall (x = 1) (right) for Ru = IO6 and T, = 0.0. (a) S, = 10.0 and S, = 0.0. (b) S, = 10.0 and S, = 5.0. 
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Table I. The average Nusselt number, Nu, at Ra = IO6 
(S, = 0.0, T. = 0.5) 

s, 0.0 1.0 3.0 10.0 cc 

m.v.0 8.675 8.459 8.159 8.144 6.678 
Z(xG-4 > 0) 8.675 8.958 9.607 10.07 10.30 

Note : A’&,, = -%l.xmr,; Nul,.,, = Z(Nu > O)- 
Nul,,o = -%I .p=,. 

with respect to the cavity center. Figure 2(a) is for the ref- 
erence case (SF = S2 = O.O), i.e. the perfectly insulated hori- 
zontal and end walls. As the thermal boundary layer near 
the heated wall develops from the bottom plate (y = 0) 
toward the ceiling (v = I), the local Nusselt number varies 
significantly in the vertical direction. However, Nu is fairly 
uniform in the z-direction in much of the heated wall, except 
for the regions close to the end walls located at z = 0 and 1. 
When an appreciable heat transfer through the horizontal 
walls is allowed (for example, S, = 10.0, as portrayed in Fig. 
2(b)), the overall magnitude of Nu is reduced ; this is obvious 
in view of the fact that a fraction of heat can now be trans- 
ferred through the horizontal walls. No heat transfer takes 
place at the end walls (z = 0 and I), which have the value of 
S, = 0.0. When the end walls are also conductors, the fea- 
tures of iso-Nu contours are remarkably modified (compare 
Fig. 2(c) with Fig. 2(b)). Figure 2(d) shows the result 
obtained by imposing a linear temperature profile on the 
horizontal walls. This can be regarded as the limiting case 
for which S, + co. The magnitudes of Nu are reduced further 
since a large part of heat transfer (approximately 35% of 
the total incoming heat, see Table 1) occurs through the 
horizontal walls. 

I f  the environment temperature is different from 0.5, the 
anti-symmetry of Nu patterns with respect to the cavity 
center disappears. For the results depicted in Fig. 3, T, is set 
equal to the cooled wall temperature (T. = 0.0). At the 
heated wall (x = 0), the qualitative features of the Nu dis- 
tribution remain similar to the cases in which T, = 0.5 (com- 
pare the corresponding results in Fig. 3(a) with Fig. 2(b), 
and Fig. 3(b) with Fig. 2(c)). At the cooled wall, however, 
the Nu patterns are drastically altered from those at the 
heated wall. 

The average Nusselt numbers, G, at the cavity walls are 
compiled in Tables 1 and 2. Table 1 represents the variation 
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FIG. 4. Profiles of the u-velocity component in the mid-z-plane (z = 0.5)along the vertical fine x = 0.5 for 
Ra = 106. (a) Effects of S, (in all cases, S, = 0.0 and T,= 0.5). (-) S, = 0.0; c...) S, = 1.0; (---) 
s, = 5.0; {-.-.-) s, = 10.0; (---) s, + co. (b) Effects of S, and T,(S, = 10.0). (-) S, = 0.0 and 

T, = 0.5: (---) S, = 0.0 and T, = 0.0; (---) S, = 5.0 and T. = 0.0; 

Table 2. The average Nusselt number, G, at Ra = lo6 
@,, = 10.0) 

S: 0.0 5.0 5.0 
TC 0.0 0.0 0.5 

IVUL-0 10.18 1 I .28 8.319 
NL I -6.30 -5.30 -8.304 

Nul,.=O -0.388 -0.204 -1.725 
Nul,.=, - 3.562 -2.90 1.732 

W:=o 0.0 - 1.437 0.0 
C(K > 0) 10.18 11.42 10.05 

Note: Gjip,, = Gl:,,. 

of I\T; at the heated wall (XIX=,,) and changes in the sum of 
the average Nusselt number for which Nu > 0 (Z(& > 0)). 
The values of S,, are altered, while SZ and T. are fixed at 
0.0 (i.e. insulated end walls) and 0.5, respectively. Due to 
the aforementioned symmetry of the local Nusselt number 
distribution, x at the cooled wall (Nul,, ,) is equal to 
- Nul,, 0. The total sum of positive x is a measure of the 
magnitude of heat transfer between the fluid inside the cavity 
and the environment. As S, ineases, Nu[,,~ gradually 
decreases ; on the other hand, Z(Nu > 0) increases since the 
conducting horizontal wall at y  = 1 enhances transport of 
heat into the cavity. At S, = 10.0, approximately 20% of the 
positive G is found tooccur at that horizontal wall. 

Table 2 summarizes Nu at different walls for various values 
of S. and T, and for S,, = 10.0. When T, is equal to the cooled 
wall temperature (T, = O.O), the heat transfer patterns at the 
two side walls are not symmetric, i.e. El,, , # -??&.,,,. In 
this case, a considerable amount of heat is seen to be removed 
from the cavity through the wall at y  = 1. It is also evident 
that heat leaves the cavity from all of the conducting surfaces 
except for the heated wall, since the environmental tem- 
perature T, is always lower than or equal to the fluid tem- 
perature. If  T, is maintained at 0.5, the energy balance at 
each end wall is always satisfied irrespective of the value of 
S, due to the symmetry of the field that arises inside the 
cavity. 

In order to examine further the local changes in the fields, 
the profiles of the velocity components and of the tem- 
perature at the plane of symmetry (z = 0.5) are inspected. 

In Fig. 4, the u-velocity profiles along the vertical line 

f.O- 

0.8- 

0.6- 
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x = 0.5 are plotted. When S, = 0.0 and r, = 0.5 (Fig. 4(a)), 
the profiles are anti-symmetric with respect to y  = 0.5, as 
anticipated. Due to the heat transfer at the horizontal walls 
(y = 0 and I), the peak values of u increase as $,. increases. 
When Sr = 10.0, the velocity profile is shown to be almost 
similar to that of the limiting case, .Sy + co. If  T. is equal to 
the cooled wall temperature (T, = O.O), flows near the top 
horizontal wall (y = 1) are accelerated, as illustrated in Fig. 
4(b). Heat transfer from the end walls is shown to strengthen 
this activity and, at the same time, it induces flows of appreci- 
able magnitude in the central portion of the cavity. 

The temperature profiles at various y  locations are dis- 
played for selected combinations of S,., S: and r, in Fig. 5. 
In the case of S, = 10.0, S, = 0.0 and T, = 0.5, the overall 
temperatures attain higher values in y  < 0.5 than those of 
the reference case (S,, = S, = 0.0 and T. = 0.5) ; this trend is 
reversed in y  > 0.5. Near the bottom plate at y  = 0 (or the 
ceiling at y  = I) flows of high (low) temperatures tend to 
penetrate to the cavity interior when heat transfer is present 
at the horizontal walls. Under the condition of S,. = 10.0, 

1.0’ 

o~5~~+ - _____._........_____.......- ----------_* 

0.6 

x-coordinate 
FIG. 5. Distribution of the temperature in the mid-z-plane 
(z = 0.5) at various heights of Ru = 106. (-) 
S, = S, = 0.0 and r. = 0.5; (---) S,. = 10.0, S, = 0.0 and 
T, = 0.5; (...) S,,= 10.0, S, = 0.0 and I”, =O.O; (---) 
S, = 10.0, S, = 5.0 and T, = 0.0. (a) y  = 0.1. (b) y  = 0.3. (c) 

y  = 0.5. (d) y  = 0.7. (e) y  = 0.9. 

Sz = 0.0 and r. = 0.0, deviations from the reference case are 
pronounced as y  increases since the heat loss from the ceiling 
is larger than that occurring at the floor. If, further, S, is set 
equal to 5.0, departures from the reference adiabatic wall 
case become further pronounced. 

CONCLUDING REMARKS 

Effects of the partially conducting surface walls of a 
differentially heated cubical enclosure are studied numeri- 
cally. By utilizing the present thermal conductance model, it 
is demonstrated that the overall flow and heat transfer activi- 
ties are enhanced. When the horizontal walls have finite 
conductance of S, Q 10.0, an appreciable heat transfer takes 
place in the vertical direction. If  the environmental tem- 
perature is equal to that of the cooled wall, asymmetry is 
remarkable in the fields. 
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